

Achieving the ultimate performance with KVM

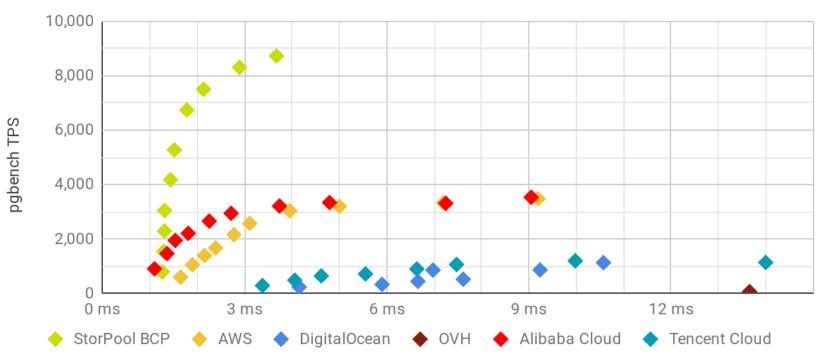
Boyan Krosnov Open Infrastructure Summit Shanghai 2019

StorPool & Boyan K.

- NVMe software-defined storage for VMs and containers
- Scale-out, HA, API-controlled
- Since 2011, in commercial production use since 2013
- Based in Sofia, Bulgaria
 - Mostly virtual disks for KVM
 - ... and bare metal Linux hosts
 - Also used with VMWare, Hyper-V, XenServer
- Integrations into OpenStack/Cinder, Kubernetes Persistent
 Volumes, CloudStack, OpenNebula, OnApp

Why performance

• Better application performance -- e.g. time to load a page, time to rebuild, time to execute specific query


Happier customers (in cloud / multi-tenant environments)

ROI, TCO - Lower cost per delivered resource (per VM) through higher density

Why performance

pgbench 4x RAM -- TPS vs latency [ms]

4

5

Agenda

- Hardware
- Compute CPU & Memory
- Networking
- Storage

Usual optimization goal

- lowest cost per delivered resource
- fixed performance target
- calculate all costs power, cooling, space, server, network, support/maintenance

Example: cost per VM with 4x dedicated 3 GHz cores and 16 GB RAM

Unusual

- Best single-thread performance I can get at any cost
- 5 GHz cores, yummy :)

	A	В	С	D	E	F	G	Н	I	J	К
1	Brand -	Model \Xi	releas — e date —	ark.inte I.com − status	release price (\$) -	Cores -	TDP (W) ÷	All-Core Turbo Clock (GHz)	Selected 1S or 2S − or 4S ?	Total \$ per . core	Total \$/GHz 후
2	Gold	6222V	May 2019	Launched	\$1,600	20	115	2.4	2S	\$290	\$121
3	Silver	4216	April 2019	Launched	\$1,002	16	100	2.7	2S	\$296	\$110
4	Gold	6230	April 2019	Launched	\$1,894	20	125	2.8	2S	\$308	\$110
5	Gold	6230T	May 2019	Launched	\$1,988	20	125	2.8	2S	\$313	\$112
6	Gold	6230N	May 2019	Launched	\$2,046	20	125	2.9	2S	\$316	\$109
7	Gold	5220	April 2019	Launched	\$1,555	18	125	2.7	2S	\$317	\$117
8	Gold	6262V	May 2019	Launched	\$2,900	24	135	2.5	2S	\$317	\$127
9	Gold	5220T	May 2019	Launched	\$1,727	18	105	2.7	2S	\$321	\$119
10	Gold	5218T	May 2019	Launched	\$1,349	16	105	2.7	2S	\$321	\$119
11	Gold	5218N	April 2019	Launched	\$1,375	16	105	3.0	2S	\$323	\$108
12	Gold	5218	April 2019	Launched	\$1,273	16	125	2.8	2S	\$323	\$115
13	Gold	5218B	April 2019	Launched	\$1,273	16	125	2.8	2S	\$323	\$115
14	Gold	6238	May 2019	Launched	\$2,612	22	140	2.8	2S	\$329	\$118
15	Gold	6238T	April 2019	Launched	\$2,742	22	125	2.7	2S	\$331	\$123
16	Silver	4214	April 2019	Launched	\$694	12	85	2.7	2S	\$333	\$123
17	Gold U	6209U	May 2019	Launched	\$1,350	20	125	2.8	1S	\$339	\$121
18	Silver	4214Y	April 2019	Launched	\$768	12	85	2.7	2S	\$340	\$126
19	Gold	5220S	May 2019	Launched	\$2,000	18	125	2.7	2S	\$343	\$127
20	Gold	6252	April 2019	Launched	\$3,655	24	150	2.8	2S	\$354	\$126
21	Gold U	6210U	May 2019	Launched	\$1,500	20	150	3.2	1S	\$355	\$111
22	Gold	6252N	May 2019	Launched	\$3,984	24	150	3.0	2S	\$368	\$123
23	Silver	4210	April 2019	Launched	\$501	10	85	2.7	2S	\$371	\$137
24	Gold	6248	April 2019	Launched	\$3,072	20	150	3.2	2S	\$378	\$118
25	Gold	6240	April 2019	Launched	\$2,445	18	150	3.3	2S	\$378	\$115

7

Intel

lowest cost per core:

- Xeon Gold 6222V - 20 cores @ 2.4 GHz lowest cost per 3GHz+ core:

- Xeon Gold 6210U - 20 cores @ 3.2 GHz

- Xeon Gold 6240 18 cores @ 3.3 GHz
- Xeon Gold 6248 20 cores @ 3.2 GHz

AMD

- EPYC 7702P 64 cores @ 2.0/3.35 GHz lowest cost per core
- EPYC 7402P 24 cores / 1S low density
 - EPYC 7742 64 cores @ 2.2/3.4GHz x 2S max density

9

Compute node hardware

Form factor

from

to

- firmware versions and BIOS settings
- Understand power management -- esp. C-states, P-states, HWP and "bias"
 - Different on AMD EPYC: "power-deterministic", "performance-deterministic"
- Think of rack level optimization how do we get the lowest total cost per delivered resource?

Agenda

- Hardware
- Compute CPU & Memory
- Networking
- Storage

Tuning KVM

RHEL7 Virtualization_Tuning_and_Optimization_Guide link

https://pve.proxmox.com/wiki/Performance_Tweaks

https://events.static.linuxfound.org/sites/events/files/slides/CloudOpen2013 Khoa Huynh v3.pdf http://www.linux-kvm.org/images/f/f9/2012-forum-virtio-blk-performance-improvement.pdf http://www.slideshare.net/janghoonsim/kvm-performance-optimization-for-ubuntu

... but don't trust everything you read. Perform your own benchmarking!

CPU and Memory

Recent Linux kernel, KVM and QEMU ... but beware of the bleeding edge E.g. qemu-kvm-ev from RHEV (repackaged by CentOS)

tuned-adm virtual-host tuned-adm virtual-guest

CPU

Typical

- (heavy) oversubscription, because VMs are mostly idling
- HT
- NUMA
- route IRQs of network and storage adapters to a core on the NUMA node they are on

Unusual

14

• CPU Pinning

Understanding oversubscription and congestion

Linux scheduler statistics: linux-stable/Documentation/scheduler/sched-stats.txt

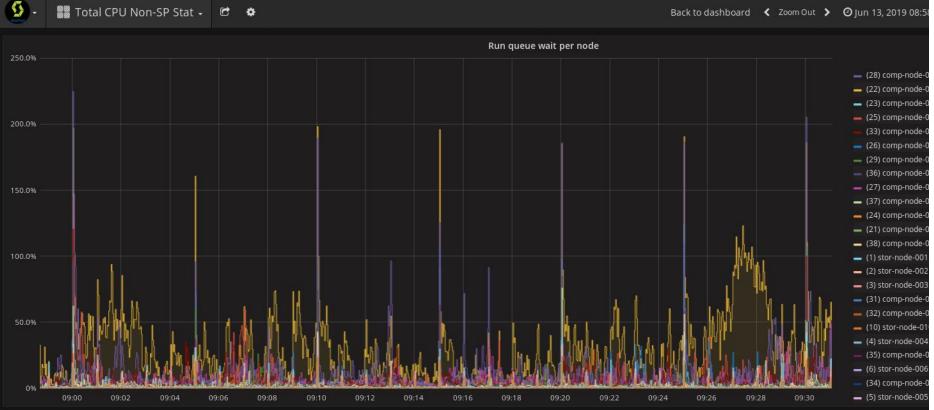
Next three are statistics describing scheduling latency:

7) sum of all time spent running by tasks on this processor (in jiffies)

8) sum of all time spent waiting to run by tasks on this processor (in

jiffies)

9) # of timeslices run on this cpu


20% CPU load with large wait time (bursty congestion) is possible 100% CPU load with no wait time, also possible

Measure CPU congestion!

Understanding oversubscription and congestion

Discussion

Memory

Typical

- Dedicated RAM
- huge pages, THP
- NUMA
- use local-node memory if you can

Unusual

- Oversubscribed RAM
- balloon
- KSM (RAM dedup)

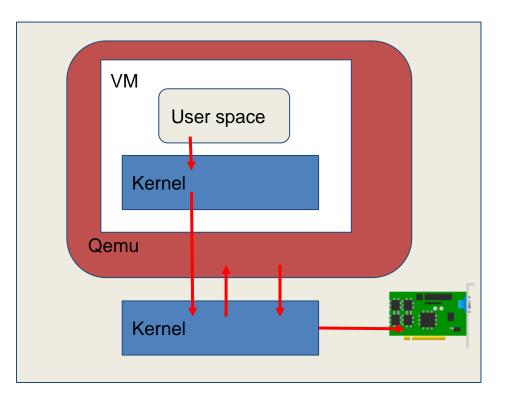
Discussion

Agenda

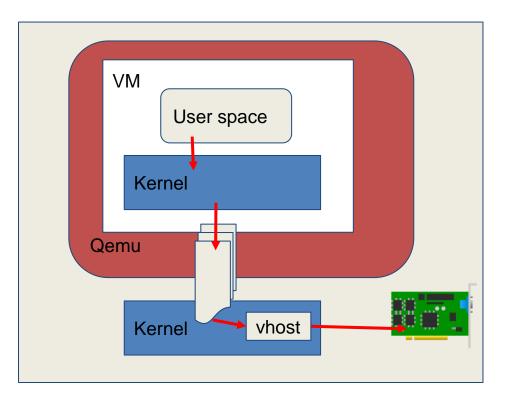
- Hardware
- Compute CPU & Memory
- Networking
- Storage

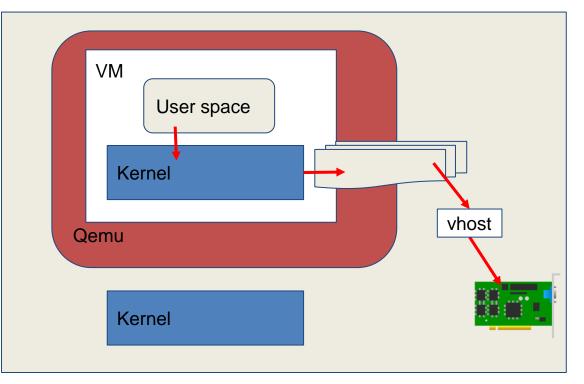
Networking

Virtualized networking Use virtio-net driver regular virtio vs vhost_net

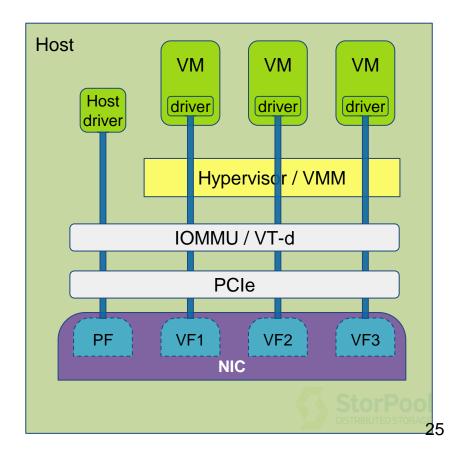

Linux Bridge vs OVS in-kernel vs OVS-DPDK

Pass-through networking SR-IOV (PCIe pass-through)


Networking - virtio


Networking - vhost

Networking - vhost-user



24

Networking - PCI Passthrough and SR-IOV

- Direct exclusive access to the PCI device
- SR-IOV one physical device appears as multiple virtual functions (VF)
- Allows different VMs to share a single PCIe hardware

Discussion

Agenda

- Hardware
- Compute CPU & Memory
- Networking
- Storage

Storage - virtualization

Virtualized

cache=none -- direct IO, bypass host buffer cache io=native -- use Linux Native AIO, not POSIX AIO (threads) virtio-blk vs virtio-scsi virtio-scsi multiqueue iothread

vs. Full bypass

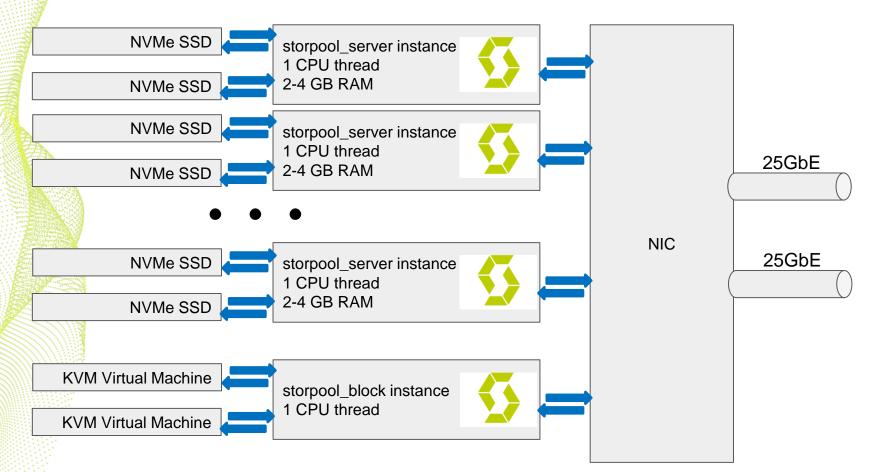
SR-IOV for NVMe devices

Storage - vhost

Virtualized with host kernel bypass

vhost

before:


guest kernel -> host kernel -> qemu -> host kernel -> storage system

after:

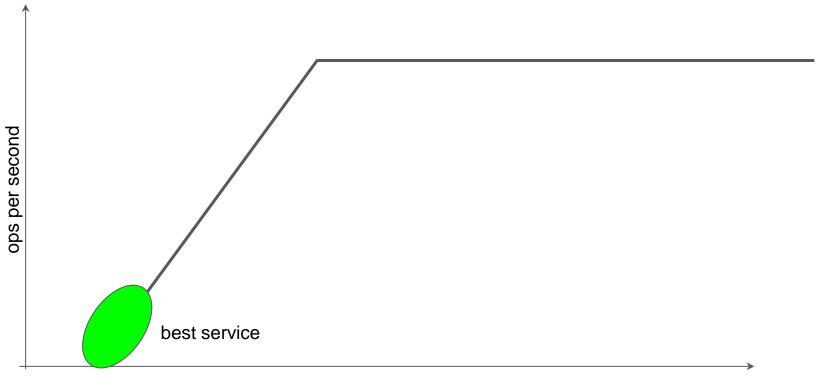
guest kernel -> storage system

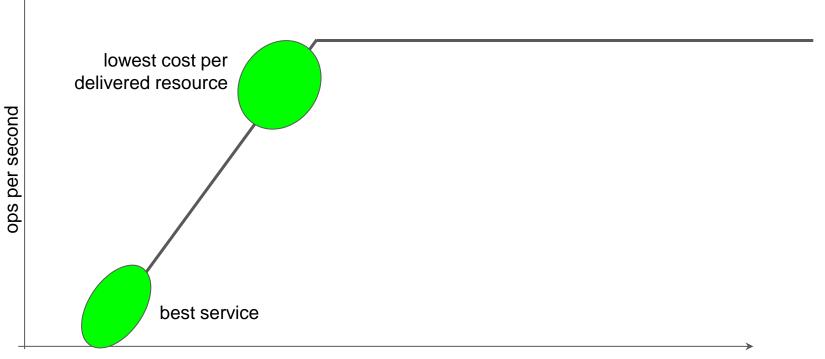
• Highly scalable and efficient architecture

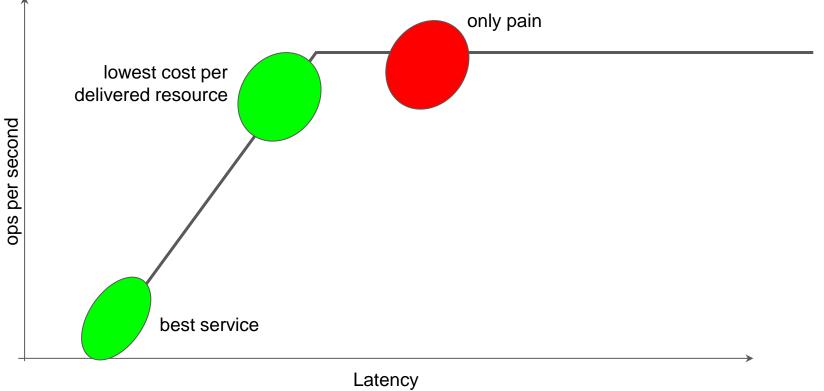
30

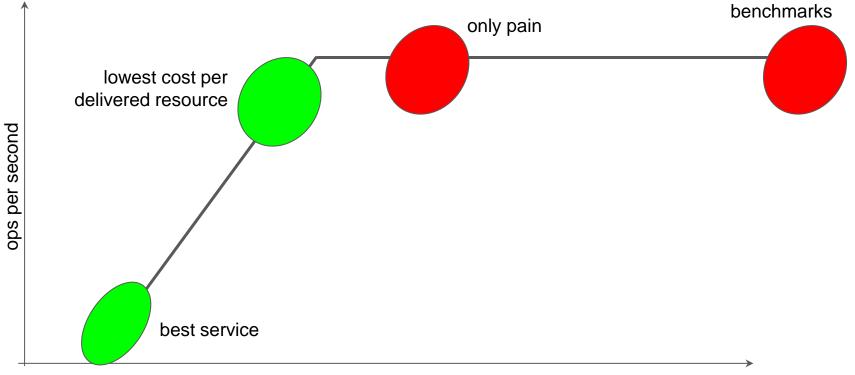
• Scales up in each storage node & out with multiple nodes

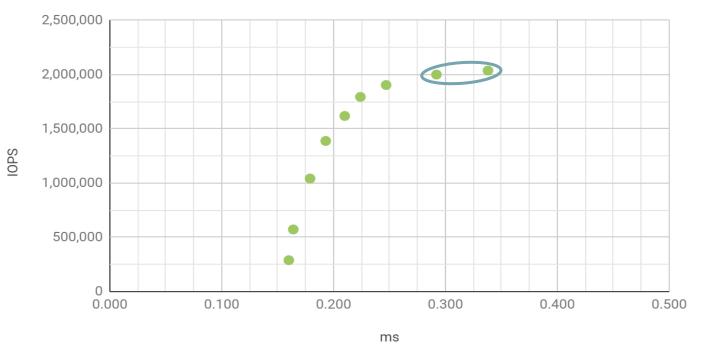
31


Storage benchmarks


Beware: lots of snake oil out there!

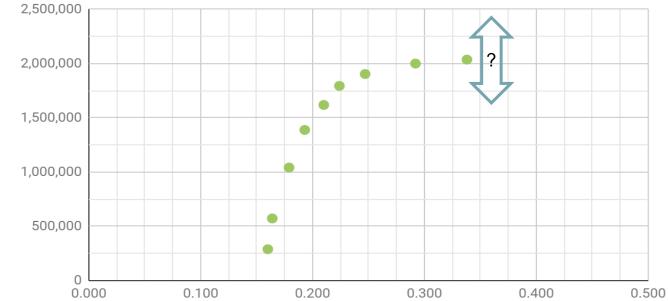

- performance numbers from hardware configurations totally unlike what you'd use in production
- synthetic tests with high iodepth 10 nodes, 10 workloads * iodepth 256 each. (because why not)
- testing with ramdisk backend


• synthetic workloads don't approximate real world (example)



IOPS vs. ms

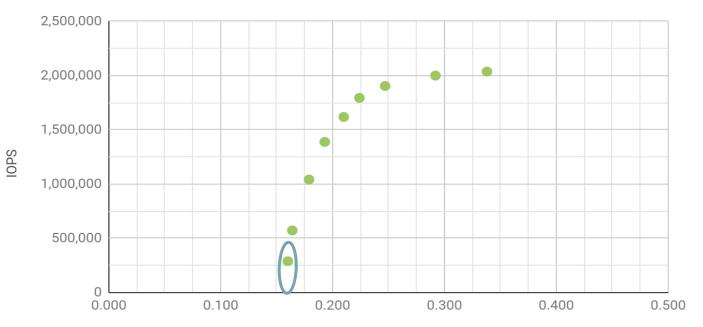
example1: 90 TB NVMe system - 22 IOPS per GB capacity example2: 116 TB NVMe system - 48 IOPS per GB capacity



SdOI

37

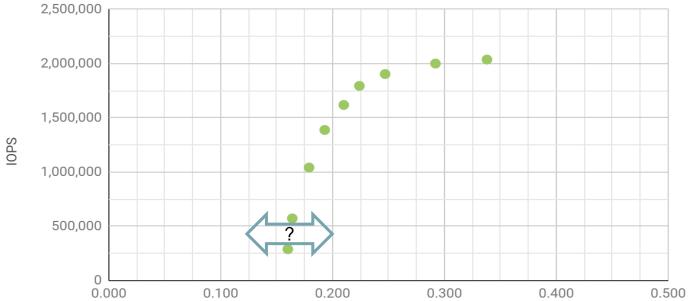
IOPS vs. ms



ms

IOPS vs. ms

ms


Real load

38

IOPS vs. ms

ms

Discussion

Thank you!

Boyan Krosnov bk@storpool.com @bkrosnov

www.storpool.com @storpool