StorPool

DISTRIBUTED STORAGE

Getting Started
Guide

StorPool version 16.01.1xx
Documen t version 2016-06-07

Introduction

StorPool is a distributed storage software. It pools the attached storage devices (hard disks or SSDs)
to create a single shared storage pool and then provides standard block devices from that pool.

There are several daemons and kernel modules on a StorPool cluster node that provide different
services:

@® Beacon
The storpool_beacon daemon must be the first StorPool process to be started on all nodes in
the cluster. It takes care of informing all members about the availability of the node on which
it is installed. Each beacon service makes sure that its node is seen by the others and
counted in the quorum. It requires the storpool_rdma kernel module.

@® Server
The storpool_server daemon must be started on each node that provides hard drives and
SSDs to the cluster. T he service requires the storpool_disk kernel module.

@® Block
The storpool_block daemon provides the client functionality. StorPool volumes may only be
attached to the nodes running this service. Requires the storpool_bd kernel module.

@® Management
The storpool_mgmt daemon receives requests from user-space tools (CLI or API), executes
them in the StorPool cluster and returns the results back to the sender. The built-in
automatic failover mechanism ensures high availability for the management service.

CLI Overview

StorPool provides an easy yet powerful Command Line Interface (CLI) for administration of the
cluster. There are various ways to execute commands; which one will be used depends on the style
and the needs of the administrator.

Type a regular shell command with parameters

storpool service list
Use the interactive StorPool shell
storpool

StorPool> service list

Pipe some command’s output to the StorPool CLI

echo "service list"” | storpool

Redirect the standard input from a predefined file with commands

storpool < input_file

The CLI has an integrated help system that provides useful information at every step.

Display the available command-line options

storpool --help

An error message with the possible options will be displayed if the shell command is incomplete or
wrong

storpool service
Error: incomplete command! Expected:
list - list Services

storpool attach disk

Error: incomplete command! Expected:
diskId (0..4095)
list - list disks

The interactive shell help can be invoked by pressing the ? key

storpool
StorPool> service ?
list - list Services

The shell autocompletion, invoked by two presses of the Tab key, will show the options available for
the current step

storpool
StorPool> volume <tab><tab>
<volumeName> 1list status

The StorPool shell can detect incomplete lines and suggest options

storpool
StorPool> volume <enter>

Error: incomplete command! Expected:
volumeName - VolumeName (string(200))
status - status of volumes
list - list Volumes

Cluster Details

The StorPool configuration file (/etc/storpool.conf) uses the .ini format. All variables that are not in a
named section are common for all the hosts (e.g. SP_EXPECTED_NODES, SP_AUTH_TOKEN).
Node-specific values are placed in a section named after the hostname of the node.

For example, use this syntax to set ID 1 for the node with the hostname spserver1

[spserveri]
SP_OURID=1

Use the following command to check the current status of StorPool cluster, listing all services:

storpool service list
cluster running, mgmt on node 1

mgmt 1 running on node 1 ver 16.01.1, started 2016-05-12 12:38:27, uptime 18:26:24 active
mgmt 2 running on node 2 ver 16.01.1, started 2016-05-12 12:39:48, uptime 18:25:03

server 1 running on node 1 ver 16.01.1, started 2016-05-12 20:12:54, uptime 10:51:57

server 2 running on node 2 ver 16.01.1, started 2016-05-12 20:18:30, uptime 10:46:21

server 3 running on node 3 ver 16.01.1, started 2016-05-12 20:12:59, uptime 10:51:52

client 10 running on node 10 ver 16.01.1, started 2016-05-13 06:10:08, uptime 00:54:43

client 11 running on node 11 ver 16.01.1, started 2016-05-13 06:26:09, uptime 00:38:42

The output above shows that in the cluster there are five nodes with IDs 1, 2, 3, 10 and 11. The
nodes with IDs 1, 2, and 3 work as servers and provide their storage devices to the cluster. The
nodes 10 and 11 have client functionality which means that StorPool volumes can be attached to
them. The management service is enabled on nodes 1 and 2, and is currently active on the first
node.

To see the cluster space usage, use:

storpool disk list

disk | server | size | used | est.free | % | free entries | on-disk | allocated objects
101 | 1] 193 GB | 136 GB | 49 GB | 73 % | 785342 | 123 GB | 6639 / 210000
111 | 1] 932 GB | 464 GB | 426 GB | 51 % | 862240 | 400 GB | 39516 / 975000
121 | 1] 932 GB | 469 GB | 421 GB | 52 % | 879256 | 407 GB | 39014 / 975000
122 | 1] 932 GB | 471 GB | 419 GB | 52 % | 878879 | 407 GB | 39014 / 975000
201 | 2 | 224 GB | 145 GB | 69 GB | 67 % | 896687 | 127 GB | 6837 / 240000
211 | 2 | 931 GB | 478 GB | 412 GB | 53 % | 857226 | 423 GB | 41418 / 975000
212 | 2 | 466 GB | 286 GB | 160 GB | 63 % | 430911 | 289 GB | 29325 / 495000
213 | 2 | 932 GB | 462 GB | 428 GB | 51 % | 856349 | 412 GB | 41041 / 975000
301 | 3| 194 GB | 138 GB | 48 GB | 74 % | 787812 | 127 GB | 6838 / 210000
302 | 3| 224 GB | 148 GB | 66 GB | 68 % | 886314 | 131 GB | 7038 / 240000
321 | 3 | 932 GB | 476 GB | 414 GB | 53 % | 876001 | 417 GB | 40766 / 975000
322 | 3| 932 GB | 482 GB | 409 GB | 53 % | 876104 | 416 GB | 39670 / 975000
323 | 3 | 932 GB | 482 GB | 409 GB | 53 % | 865860 | 424 GB | 40082 / 975000
13 | 3|1 85TB| 4.5TB| 3.6 TB | 55% | 10738981 | 4.0 TB | 377198 / 9195000

To see more detailed information about the disks:

storpool disk list info

disk | server | device | model | serial | description | flags |
101 | 1 | /dev/sdb1 | INTEL_SSDSC2BB24 | BTWL34500AAA000NGA | = | ssd |
11 | 1 | /dev/sdd1 | Hitachi_HUA72201 | JPAQTONT3AAAAA | - [
121 | 1 | /dev/sdel | WDC_WD1003FBYZ-0 | WD-WCAW3AQ0AAAA | = | |
122 | 1 | /dev/sdal | WDC_WD1003FBYZ-0 | WD-WCAW3AQQAAAB | - [
201 | 2 | /dev/sdi1 | INTEL_SSDSC2BB24 | BTWL34500AAA000NGB | = | ssd |
211 | 2 | /dev/sdc1 | 9690SA-4I_DISK | N13N630A0A000A00A000 | = | |
212 | 2 | /dev/sdf1 | Hitachi_HDS72105 | JPOOOOFROOAAAA | = | |
213 | 2 | /dev/sdd1 | WDC_WD10Q@3FBYZ-0 | WD-WCAW3AQ0QAAAC | = | |
301 | 3 | /dev/sdd1 | INTEL_SSDSC2BB24 | BTWL34500AAA000NGC | = | ssd |
302 | 3 | /dev/sdel | INTEL_SSDSC2BB24 | BTWL34500AAA000NGD | = | ssd |
321 | 3 | /dev/sdf1 | WDC_WD10@3FBYZ-0 | WD-WCAW3AQ0QAAAD | = |
322 | 3 | /dev/sdal | WDC_WD1003FBYZ-0 | WD-WCAW3AQQAAAE | = | |
323 | 3 | /dev/sdb1 | WDC_WD10@3FBYZ-0 | WD-WCAW3AQQAAAF | = | |

The upper two tables are also helpful in determining which disk ID is assigned to the physical
storage device and which server it is attached to.

Volumes

Volumes are the basic service of the StorPool storage system. They have a name and a certain size.
They can be read from and written to. They can be attached to hosts as read-only or read-write
block devices under /dev/storpool.

Before creating a volume, one or more placement groups must exist in the cluster. These groups are
predefined sets of disks, over which the volume’s objects will be replicated. It is possible to specify
which individual disks to add to the group or alternatively to add all the disks provided by the
specified server. In the following examples two groups will be created.

The first contains all the SSDs

storpool placementGroup ssd addDisk 101 addDisk 201 addDisk 301 addDisk 302
(0] ¢
storpool placementGroup ssd list

type | id

disk | 101 201 301 302

The second contains all the HDDs

storpool placementGroup hdd addDisk 111 addDisk 121 addDisk 122
0K
storpool placementGroup hdd addDisk 211 addDisk 212 addDisk 213
(0.4
storpool placementGroup hdd addDisk 321 addDisk 322 addDisk 323
oK
storpool placementGroup hdd list

type | id

disk | 111 121 122 211 212 213 321 322 323

Now create a volume with a given name, size, and replication, using the already created placement
groups

storpool volume testvoll size 1G replication 3 placeAll hdd placeTail ssd
0K
storpool volume list

| volume | size | repl. | placeAll | placeTail | iops | bw | parent | template |

| testvoll | 1 GB | 3 hdd | ssd | o - | |

When a large number of similar volumes must be created, the administrator can predefine
attributes in a template and then base volumes on it.

Define a template

storpool template hybrid-r3 size 1G replication 3 placeAll hdd placeTail ssd
0K

Now create a volume based on this template

storpool volume testvol2 template hybrid-r3

0K
storpool volume list

volume	size	repl	placeAll	placeTail	iops	bw	parent	template
testvoll	1 GB	3] hdd	ssd	-1 -] -1				
testvol2	1 GB	3	hdd	ssd	=1 =] -	hybrid-r3		

Snapshots

Snapshots are read-only point-in-time images of volumes. They are created once and cannot be
changed. They can be attached to hosts as read-only block devices.

Creating a snapshot of a volume.

storpool volume testvoll snapshot ss_testvolil
0K
storpool snapshot list

| snapshot | size | repl | placeAll | placeTail | created on | volume | iops | bw | parent | template

| ss_testvoll | 1 GB | 3| hdd | ssd | 2015-03-01 14:25:00 | testvoll | -
-1 I |

Volumes can be based on snapshots. Such volumes contain only the changes since the snapshot was
taken. After a volume is created from a snapshot, any data written will be recorded within the

volume. Read requests may be served by the volume (for data that has been written to it) or by its
parent snapshot.

To create a volume based on an existing snapshot

storpool volume testvol3 parent ss_testvoll
0K
storpool volume list

| volume | size | repl | placeAll | placeTail | iops | bw | parent | template

| testvoll | 1 GB | 3| hdd | ssd | - | - | ss_testvoll |

| testvol2 | 1 GB | 3] hdd | ssd | =[] = - | hybrid-r3 |
| testvol3 | 1 GB | 3| hdd | ssd | - | - | ss_testvoll |

Us e Volumes and Snapshots

Attaching a volume or snapshot makes it accessible to the client as a block device in the
/dev/storpool directory. Volumes can be attached as read-only or read-write. Snapshots are
attached as read-only.

Attach a volume to the client node with ID 10; this creates the /dev/storpool/testvol1 block device

storpool attach volume testvoll client 10

Attach a snapshot to client 20

storpool attach volume ss_testvoll client 20

List all the attachments

storpool attach list

client	volume	mode
10	testvoli1	RW
20	ss_testvol1	RO

On a node where a volume is attached, it can be used as a regular block device

[root@node10]# 1ls -1 /dev/storpool/testvoli
lrwxrwxrwx 1 root root 7 Apr 21 20:00 /dev/storpool/testvoll -> ../sp-0

[root@node10]# fdisk -1 /dev/storpool/testvoll

Disk /dev/storpool/testvoll: 1073 MB, 1073741824 bytes
64 heads, 32 sectors/track, 1024 cylinders

Units = cylinders of 2048 * 512 = 1048576 bytes

Sector size (logical/physical): 512 bytes / 512 bytes
I/0 size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00000000

Testing Volumes

After a volume has been created and attached to a client, it is possible to perform synthetic
performance tests over it using the fio tool. Please note that the following examples can destroy all
data on the tested volumes.

If the volume is unallocated, the storpool_server will return zeroes from memory, without actually
reading any data from the drives. So to get realistic performance results, first it will be necessary to
fill the volume end-to-end.

[root@node10]# fio --name=fill --ioengine=aio --direct=1 --sync=1 --rw=write --bs=1M
--iodepth=1 --filename=/dev/storpool/testvoli

To measure the latency times of random operations on the volume, use iodepth=1

[root@node10]# fio --name=latency-randwrite --ioengine=aio --direct=1 --randrepeat=0
--sync=1 --rw=randwrite --bs=4k --iodepth=1 --filename=/dev/storpool/testvoll

[root@node10]# fio --name=latency-randread --ioengine=aio --direct=1 --randrepeat=0
--sync=1 --rw=randread --bs=4k --iodepth=1--filename=/dev/storpool/testvoli

To measure the simulated real-life performance in input/output operations per second (iops), use
random operations, set the blocksize to a value which will be used by the filesystem (e.g. 4KB) and
set iodepth to a value approximating the number of concurrent read/write requests that an actual
application would use (e.g. higher for a webserver handling many simultaneous requests or for a
database engine handling queries from/to different databases or different tables)

[root@node10]# fio --name=iops-randwrite --ioengine=aio --direct=1 --randrepeat=0

--rw=randwrite --bs=4k --iodepth=128 --filename=/dev/storpool/testvolil

[root@node10]# fio --name=iops-randread --ioengine=aio --direct=1 --randrepeat=0
--rw=randread --bs=4k --iodepth=128 --filename=/dev/storpool/testvoli

Use sequential operations with a big block size (e.g. 1MB) to measure the throughput of the volume

[root@node10]# fio --name=sequential-writes --ioengine=aio --direct=1 --randrepeat=0
--rw=write --bs=1m --iodepth=128 --filename=/dev/storpool/testvoll

[root@node10]# fio --name=sequential-reads --ioengine=aio --direct=1 --randrepeat=0
--rw=read --bs=1m --iodepth=128 --filename=/dev/storpool/testvoll

